Nanostructured Metal Oxides Based Enzymatic Electrochemical Biosensors
نویسنده
چکیده
Studies of nanobiosensors based on semiconductor nanostructured metal oxides are of practical and theoretical importance in biological science, environmental science and analytical chemistry (Wang et al., 2005; Luo et al., 2006; Valentini & Palleschi (2008); Chopra et al., 2007). These one-dimensional nanostructured metal oxides have profound applications in optics, optoelectronics, sensors, and actuators duo to their semiconducting, piezoelectric, and pyroelectric properties (Wang et al., 2005; Chopra et al., 2007; Kerman et al., 2008; Chow et al., 2005). Nanostructured metal oxides not only possesses high surface area, nontoxicity, good biocompatibility and chemical stability, but also shows fast electron communication features made the materials to be able to function as biomimetic membrane material to fix and modify proteins (Wang et al., 2005; Chopra et al., 2007; Valentini & Palleschi (2008)). These biomimetic and high electron communication features, high surface to volume ratio and electro-catalytic activity of the nanosized materials make them ideal as immobilization matrices, as transduction platform and/or mediators. Stability, sensitivity, selectivity and other analytical characteristics of biosensors are essential features to design desirable microenviroment for the direct electron transfer between the enzyme’s active sites and the electrode. To improve these characteristics various conventional materials matrices have been proposed. Among them nanostructured metal oxides matrices not only retain the bioactivity of the immobilized enzyme but also enhanced the sensing characteristics such as sensitivity, selectivity and low detection limit of the fabricated amperomatric enzymatic biosensors. Morphology of the nanosized material is one of the most ideally suited important factor to determine the properties for biosensor applications since they are conductive, biocompatible, easily functionalized while they have very large surface area. Nanosized metal oxides based electrochemical enzymatic biosensors have active surfaces that can easily be modified for immobilization of biomolecules. However, this advantage may not apply to many non-oxide semiconductor nanomaterials because their surfaces are not stable in an air environment, which leads to formation of an insulating native oxide layer and may degrade device reliability and sensitivity. Whereas, nanostructured metal oxides based electrochemical transducer surfaces promote the direct electron transfer reactions, amplify and orient the analytic signal of the biorecognition events. When a redox protein is immobilized on a biocompatible metal oxide electrode surface, it will exhibit reasonably fast electron transfer kinetic and permit the
منابع مشابه
A Comprehensive Review of Glucose Biosensors Based on Nanostructured Metal-Oxides
Nanotechnology has opened new and exhilarating opportunities for exploring glucose biosensing applications of the newly prepared nanostructured materials. Nanostructured metal-oxides have been extensively explored to develop biosensors with high sensitivity, fast response times, and stability for the determination of glucose by electrochemical oxidation. This article concentrates mainly on the ...
متن کاملNanostructured Mn-based oxides for electrochemical energy storage and conversion.
Batteries and supercapacitors as electrochemical energy storage and conversion devices are continuously serving for human life. The electrochemical performance of batteries and supercapacitors depends in large part on the active materials in electrodes. As an important family, Mn-based oxides have shown versatile applications in primary batteries, secondary batteries, metal-air batteries, and p...
متن کاملSolution synthesis of metal oxides for electrochemical energy storage applications.
This article provides an overview of solution-based methods for the controllable synthesis of metal oxides and their applications for electrochemical energy storage. Typical solution synthesis strategies are summarized and the detailed chemical reactions are elaborated for several common nanostructured transition metal oxides and their composites. The merits and demerits of these synthesis meth...
متن کاملRecent progress in Prussian blue films: Methods used to control regular nanostructures for electrochemical biosensing applications.
In the last decade, Prussian blue (PB) has attracted increased scientific interest in various research fields, such as fuel cells, gas separation and pollution treatment. Due to its advanced catalysis, biocompatibility, selectivity and stability, PB has been widely used in biosensor construction. However, the formation of regular PB nanostructures is challenging due to its fast crystallization ...
متن کاملImmobilization Techniques in the Fabrication of Nanomaterial-Based Electrochemical Biosensors: A Review
The evolution of 1st to 3rd generation electrochemical biosensors reflects a simplification and enhancement of the transduction pathway. However, in recent years, modification of the transducer with nanomaterials has become increasingly studied and imparts many advantages. The sensitivity and overall performance of enzymatic biosensors has improved tremendously as a result of incorporating nano...
متن کامل